首页> 外文OA文献 >Dense segmentation-aware descriptors
【2h】

Dense segmentation-aware descriptors

机译:密集的分段感知描述符

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information within dense feature construction. The core idea is to use the segmentation cues to downplay the features coming from image areas that are unlikely to belong to the same region as the feature point. We show how to integrate this idea with dense SIFT, as well as with the dense scale- and rotation-invariant descriptor (SID). We thereby deliver dense descriptors that are invariant to background changes, rotation, and/or scaling. We explore the merit of our technique in conjunction with large displacement motion estimation and wide-baseline stereo, and demonstrate that exploiting segmentation information yields clear improvements.
机译:密集描述符在许多任务中变得越来越流行,例如密集图像对应,词袋图像分类和标签转移。但是,提取通用图像点上的描述符而不是选择几何特征,需要重新考虑如何实现对扰动参数的不变性。在这项工作中,我们通过在密集特征构造中引入分割信息来追求遮挡和背景变化的不变性。核心思想是使用分割提示来淡化来自不太可能与特征点属于同一区域的图像区域的特征。我们展示了如何将此思想与密集的SIFT以及密集的比例尺和旋转不变描述符(SID)集成。因此,我们提供了对背景变化,旋转和/或缩放不变的密集描述符。我们结合大位移运动估计和宽基线立体声探索了我们技术的优点,并证明了利用分割信息可以产生明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号